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In this article we perform dynamical analysis of a broad class of barotropic fluids in the spatially curved
Friedmann-Robertson-Walker (FRW) spacetime background without considering the cosmological
constant. The first part of our study concerns the dynamics of a fluid with an unspecified barotropic
equation of state (EoS) having as the only assumption the non-negativity of the fluid’s energy density. After
defining a new set of dimensionless variables and a new evolution parameter, we introduce the function Γ
that encodes the EoS. In this general setup several features of the system are identified: critical points,
invariant subsets and the characteristics of the function Γ, along with their cosmological interpretations.
The second part of our work provides two examples with specific Γ functions. In the first example we
provide a Γ function and then we exhibit how it can be trimmed down to a specific class of EoS through
physical arguments, while in the second example we discuss the quadratic EoS studied in Phys. Rev. D 74,
023523 (2006) by comparing our approach with their analysis.
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I. INTRODUCTION

On large scales, the Universe appears to be homogeneous
and isotropic [1]: hence the Friedmann-Robertson-Walker
(FRW) model still seems relevant in approximating its
evolution. Moreover, considering a nonzero curvature of
the spatial slices seems to be observationally relevant and
might help in alleviating some tensions in cosmology [2,3].
From the point of view of the source in Einstein’s field
equations, barotropic fluids are the first step in describing
the matter content of the Universe. The above setting is a
common starting point for studies trying to describe impor-
tant cosmological aspects, such as the phenomenological
behavior of the dark sector. In such a setup one can, for
instance, describe a multifluid source by a single phenom-
enological equation of state, such as in the case of gener-
alized Chaplygin gas [4] or logotropic fluids [5].
For a FRW cosmology with only a fluid component, the

Friedmann equation and the Raychaudhuri equation are
respectively given by

H2 þ k
a2

¼ ϵ

3
; ð1Þ

2 _H þ 3H2 þ k
a2

¼ −P; ð2Þ

while the continuity equation for the energy density is

_ϵþ 3HðPþ ϵÞ ¼ 0; ð3Þ

where a is the scale factor, k is the spatial curvature, H ¼ _a
a

is the Hubble expansion rate, _ denotes derivative with
respect to the coordinate time, ϵ is the energy density and P
is the pressure of the barotropic fluid. Once the EoS is
given, i.e., P ¼ PðϵÞ, the system is closed and it is in
principle possible to provide the scale factor as function of
the energy density:

a ¼ a0 exp

�
−
1

3

Z
ϵ

ϵ0

dϵ
ϵþ PðϵÞ

�
; ð4Þ

where subscripts 0 denote integration constants resulting
from integrating evolution equations, like the Raychaudhuri
and the continuity equations. In this way the problem is
reduced to solving a single secondorder ordinary differential
equation (ODE) and it seems trivial. However, the integral in
Eq. (4) is not necessarily easy to calculate and the resulting
ODEmight be difficult to treat. Of course, in order to address
the problem in this manner, one has to know first the EoS.
In our study we analyze the dynamics of barotropic

fluids in spatially curved FRW without specifying the EoS.
The only assumption is that ϵ ≥ 0, while we do not impose
any restrictions on the pressure P. Allowing pressure to
attain negative values allows us to describe cosmological
models driven by one fluid with a phenomenological EoS

*kerachian.morteza@gmail.com
†gioacqua@gmail.com
‡gglukes@gmail.com

PHYSICAL REVIEW D 101, 043535 (2020)

2470-0010=2020=101(4)=043535(20) 043535-1 © 2020 American Physical Society

https://orcid.org/0000-0002-7509-4609
https://orcid.org/0000-0001-8197-0495
https://orcid.org/0000-0002-6333-3094
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.043535&domain=pdf&date_stamp=2020-02-28
https://doi.org/10.1103/PhysRevD.74.023523
https://doi.org/10.1103/PhysRevD.74.023523
https://doi.org/10.1103/PhysRevD.101.043535
https://doi.org/10.1103/PhysRevD.101.043535
https://doi.org/10.1103/PhysRevD.101.043535
https://doi.org/10.1103/PhysRevD.101.043535


which can end with an accelerated expansion. During the
evolution of the models such a fluid can have a standard
behavior, i.e., the speed of sound 0 ≤ c2s ≤ 1, but can also
entertain more exotic cases. Analysis of cosmological
models including fluids with rather general EoS can be
found in the literature. In [6,7] the authors study the general
properties of barotropic EoS: although a linear relation
between energy density and pressure is implied, the
proportionality parameter has a generic dependence on
the scale factor. In [8] a dynamical analysis of a generic real
gas is performed in the parameter space spanned by the
Hubble function H, the number density n and the temper-
ature T of the gas. A quite general equation of state has
been considered in [9] with the aim of studying future
cosmological singularities. On the other hand, attempts to
determine the form of EoS from observations can be found,
for example, in [10] (see also [11] for a review).
A general functional form of dark energy has been

considered in various settings: for instance, in [12] the
cosmological consequences of a time-dependent Λ were
discussed. A varying cosmological constant can be inter-
preted as a particle creation process, which has been
discussed for example in [13], while an attempt to recon-
struct dark matter/dark energy interaction through particle
creation has been presented in [14].
The analysis that we carry out in the present paper takes

inspiration from dynamical analysis of scalar fields in
cosmology: in the simplest models describing a scalar
field with an unspecified potential, general features regard-
ing the dynamics of the system can be inferred by
inspecting the properties of the so-called “tracker param-
eter," which depends on the second derivative of the
potential (see [15]). Similarly, we will relate the global
and asymptotic behavior of entire classes of EoS to the
properties of a function which depends on the second
derivative of the pressure PðϵÞ. An analogous study has
been carried out in [16] for the generic functional
form P ¼ PðHÞ.

II. THE DYNAMICAL SYSTEM

In order to compose well-defined dimensionless varia-
bles which are valid for both k > 0 and k ≤ 0 one can
introduce the normalization D2 ¼ H2 þ jkj=a2. Thus, we
construct the new dimensionless variables as follows

Ωϵ ¼
ϵ

3D2
; ΩH ¼ H

D
; ð5Þ

ΩP ¼ P
D2

; Ω∂P ¼ ∂P
∂ϵ ; ð6Þ

Γ ¼ ∂2P
∂ϵ2 ϵ: ð7Þ

The Jacobian determinant of the above transformation is

det J ¼ −
Γ

3D7
; ð8Þ

which implies that the transformation is singular when
Γ ¼ 0. We will discuss in detail the implications of this
singularity in Sec. IV, here we just mention that when
Γ ¼ 0 then Ω∂P becomes redundant and the dimensionality
of the system is reduced. Note also that the EoS is defined
by the parameter Γ. Since we allow ∂P=∂ϵ to be negative,
we relax its interpretation as speed of sound and instead of
denoting it as c2s we have renamed it Ω∂P.
In order to recast the evolution equations as an autono-

mous system, we take derivatives of the dimensionless
variables with respect to the evolution parameter τ, related
to the cosmic time by dτ ¼ Ddt. This time parameter is
well-defined throughout the whole cosmic evolution, in
particular during possible recollapsing or bouncing scenar-
ios where H ¼ 0. The resulting system is given by

Ω0
ϵ ¼ −ΩH

�
Ωp þΩϵ

�
3þ 2

�
_H
D2

þ Ω2
H − 1

���
; ð9Þ

Ω0
H ¼ ð1 −Ω2

HÞ
�

_H
D2

þΩ2
H

�
; ð10Þ

Ω0
P ¼−ΩH

�
3Ω∂PðΩPþ3ΩϵÞþ2ΩP

�
_H
D2

þΩ2
H−1

��
;

ð11Þ

Ω0∂P ¼ −ΩH

�
ΩP

Ωϵ
þ 3

�
Γ: ð12Þ

A. Positive curvature

When k > 0, the Friedmann equation can be expressed
in terms of the variables Eqs. (5)–(7) in the following form:

Ωϵ ¼ 1: ð13Þ

From Raychaudhuri equation we get

_H
D2

¼ −
1

2
ðΩP þ 1Þ −Ω2

H: ð14Þ

B. Nonpositive curvature

Applying the same definitions given by Eqs. (5)–(7) to
the case of nonpositive spatial curvature k ≤ 0, one can
reexpress the Friedmann constraint (1) as

Ωϵ ¼ 2Ω2
H − 1; ð15Þ

and the Raychaudhuri equation (2) as
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_H
D2

¼ −
1

2
ðΩP þ 1Þ þ ð1 − 2Ω2

HÞ: ð16Þ

Since by definition Ω2
H ≤ 1 and by assumption ϵ ≥ 0,

Eq. (15) implies that 0≤Ωϵ≤1 and 1
2
≤Ω2

H ≤1. However,
as we will see, the system of evolution equations does
not include automatically the requirement of positivity
of energy and the trajectories might cross toward the
negative energy regions: hence, we will have to select by
hand the parts of variable space that we consider physically
plausible.

III. CRITICAL POINTS AND THEIR
INTERPRETATION

The critical elements of the system are those values of the
variables such that Ω0 ¼ 0. Once the critical points are
found, one can provide a cosmological interpretation in
terms of the deceleration parameter

q ¼ −1 −
_H
H2

¼ −1 −Ω−2
H

_H
D2

; ð17Þ

where we used the definition of ΩH. From the
Raychaudhuri Eq. (14) for positive curvature we see that,
in order to have accelerated expansion, i.e., q < 0, one
needs ΩP < −1. For the negative curvature case, by using
Eq. (16), one has instead ΩP < 1 − 2Ω2

H ¼ −Ωϵ. Thus, of
course, having negative pressure is a necessary but not
sufficient condition for accelerated expansion.

A. Two de Sitter critical lines

The system presents two critical lines with a
de Sitter behavior, with coordinates fΩϵ;ΩH;ΩP;Ω∂Pg¼
f1;�1;−3;∀g. Note that since Γ has not yet been defined,
these critical elements are independent of the EoS of the
fluid. Specific choices of EoS can provide certain values
for Ω∂P, as we will show later on.
Taking into account the definitions of Ωϵ and ΩP, for

both of these lines one could claim that P ¼ −ϵ, which
would imply that Ω∂P ¼ −1. However, this is not the case,
since at this point the EoS is still kept unspecified. Actually,
as we will see in Sec. V, once an EoS is specified this
critical point corresponds to the intersection between the
function P ¼ PðϵÞ and the P ¼ −ϵ line.
The line with ΩH ¼ 1 (called Aþ) has the typical

cosmological constant behavior given by q ¼ −1. The
corresponding eigenvalues are

fλAþ
i g ¼ f−2; 0;−3ð1þΩ∂PÞg: ð18Þ

Thus, Eq. (18) implies that for Ω∂P < −1 critical points
along the line Aþ are saddles. If Ω∂P ≥ −1 the center

manifold theorem does not provide the stability, thus we
will discuss it through numerical examples for specific Γ.
The line with ΩH ¼ −1 (called A−) describes an expo-

nentially shrinking universe with q ¼ −1. The eigenvalues
in this case are

fλA−
i g ¼ f2; 0; 3ð1þ Ω∂PÞg; ð19Þ

Equation (19) implies that A− is saddle for Ω∂P < −1.
Again, for Ω∂P ≥ −1 we will use numerical examples to
discuss the stability for specific Γ.

B. Static universe critical line

For positive curvature, the coordinates fΩϵ;ΩH;ΩP;
Ω∂Pg¼f1;0;−1;∀g correspond to a critical line (called
B) describing a static universe, i.e., a ¼ const. These points
have eigenvalues

fλBi g ¼ f0;−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Ω∂P

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Ω∂P

p
g: ð20Þ

Regarding the stability, as long as1þ 3Ω∂P > 0,B is saddle;
for 1þ 3Ω∂P < 0 it is center; for Ω∂P ¼ −1=3 the corre-
sponding point is degenerate and all eigenvalues are zero,
hence the center manifold theory cannot say anything about
its stability: however, from a numerical inspection we find
that in this case the point is marginally unstable.1

IV. GENERAL FEATURES OF Γ: INVARIANT
SUBSETS AND CRITICAL POINTS

Since we have assumed that P ¼ PðϵÞ, the definition of
Γ Eq. (7) implies that Γ ¼ ΓðϵÞ. But the energy density is
not a dimensionless parameter of the system and since Γ
should not depend on the geometry, the only valid option
for its functional form is Γ ¼ ΓðΩ∂P; ΩP

Ωϵ
Þ. In some cases

(see Appendix A) one can express ΩP
Ωϵ

as a function of Ω∂P
and hence Γ ¼ ΓðΩ∂PÞ or vice versa.
Equation (12) of our dynamical system has been derived

by combining the barotropicity of the effective fluid with
the continuity equation (3), namely

_Ω∂P ¼ ∂Ω∂P
∂ϵ _ϵ ¼ −3H

�
1þ P

ϵ

��∂Ω∂P
∂ϵ ϵ

�
; ð21Þ

where the last square bracket defines the parameter Γ.
Equation (21) is independent of our choice of dimension-
less variables and it clearly indicates that any root of Γ will
be a stationary point in time for Ω∂P: this can happen either
when ϵ ¼ 0 or wheneverΩ∂P has an extremumwith respect

1A critical line (denoted by B̄) corresponding to a static
universe exist also for the case of negative curvature. These
points are located at fΩϵ;ΩH;ΩP;Ω∂Pg ¼ f−1; 0; 1; ∀ g.
This location, however, lies at Ωϵ < 0, which, as discussed in
Sec. II B, is excluded from our study.
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to the energy density, i.e., whenever PðϵÞ has an inflection
point. Physically we expect ϵ ¼ 0 only asymptotically,
either past or future depending whether the model is
collapsing or expanding; the second case instead can
happen for some finite energy density and at a finite time.
Hence, any inflection point of the EoS for ϵ > 0 will create
an invariant subset in the parameter space of the dynamical
system in the case that Γ ¼ ΓðΩ∂PÞ.
By choosing appropriately the form of the function Γ we

can impose physically meaningful constraints on the
evolution of the system. For instance, being Ω∂P a
dynamical variable, one could require the causality con-
dition Ω∂P ≤ 1 by imposing that ΓðΩ∂P ¼ 1Þ ¼ 0 (see
Sec. VA). Such condition cannot be imposed at the level of
equation of state, since this would not be part of the
evolution equations of the system and it would not stop the
dynamical system from crossing the value Ω∂P ¼ 1.
Something analogous can happen for any other condition
which is not imposed at the level of evolution equations
(see, e.g., Sec. IV B).
Critical lines A� and B are independent of the EoS since

they exist for any Ω∂P. However, once the function Γ is
chosen, its roots Ω̃∂P introduce invariant subsets lying on
fΩH;ΩPg planes and critical points lying in these planes.2

These critical points are located at fΩH;ΩPg¼f�1;3Ω̃∂Pg,
hence for each root of Γ there will be a pair of critical points
C�. Moreover, any new invariant subset might intersect the
critical lines: we denote the resulting critical points with the
same name as the respective critical lines throughout
the text.
The scale factor in Cþ grows as a ∼ ðt − t0Þ

2
3ðΩ̃∂Pþ1Þ, while

in C− the scale factor decreases as a ∼ ðt0 − tÞ
2

3ðΩ̃∂Pþ1Þ.
Moreover, the deceleration parameter at these points is
q ¼ 1

2
ð3Ω̃∂P þ 1Þ. Therefore, according to this parameter

these critical points describe an accelerated phase if Ω̃∂P <
− 1

3
and a decelerated phase if Ω̃∂P > − 1

3
.

On the invariant subset fΩH;ΩPg point Cþ has eigen-
values

fλCþ
i g ¼ f3ð1þ Ω̃∂PÞ; 1þ 3Ω̃∂Pg; ð22Þ

and C− has

fλC−
i g ¼ f−3ð1þ Ω̃∂PÞ;−ð1þ 3Ω̃∂PÞg: ð23Þ

From Eqs. (22) and (23) we see that for − 1
3
< Ω̃∂P pointCþ

(C−) represent a source (sink). For the case −1 < Ω̃∂P <
− 1

3
instead C� are saddle. Finally, for Ω̃∂P < −1 point Cþ

(C−) is a sink (source).

Since the stability of A�, B (see Sec. III) and C� depends
on the value of Ω̃∂P, we split our analysis into the following
three ranges

(i) − 1
3
< Ω̃∂P,

(ii) −1 < Ω̃∂P < − 1
3
,

(iii) Ω̃∂P < −1.
The behavior of these cases will be depicted for positive
and nonpositive curvatures, choosing one representative
value of Ω̃∂P for each range, noting that the topology of the
trajectories is independent of the specific value inside each
range. Assuming further that the function Γ has only one
root, there is only one pair of critical points C�.

A. Positive curvature

For positive curvature the system has invariant subsets
located at ΩP ¼ −3 and ΩP ¼ 3Ω̃∂P. In order to study the
behavior at ΩP ¼ �∞ one can compactify ΩP by using the
transformation

XP ¼ ζΩPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ2Ω2

P

p ∈ ½−1; 1�; ð24Þ

where ζ > 0 is just a constant rescaling parameter. This
kind of compactification is well-defined and does not
introduce any spurious element into the system (see,
e.g., Appendix B in [17]).
The evolution equation for this variable is

X0
P ¼ ΩH

ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2

P

q
�
XP þ 3ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2

P

q ��
XP − 3ζΩ∂P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2

P

q �
; ð25Þ

which along with the Eq. (10) defines the compactified
system.
a. Invariant subsets for − 1

3
< Ω̃∂P. The corresponding

invariant subsets divide the variable space into three
disjoint regions. The portrait of the variable space is
depicted in Fig. 1(a) where the value Ω̃∂P ¼ 1 has been
chosen. The sources of the system are Cþ and A−, B is a
saddle point, and Aþ and C− are sinks.

(i) The region 3Ω̃∂P ≤ ΩP describes recollapsing mod-
els starting from expanding Cþ and going toward
contracting C−.

(ii) The region bounded between −3 ≤ ΩP ≤ 3Ω̃∂P is
divided into four subregions by separatrices. The
separatrices meet at the static universe point B. The
right subregion is characterized by trajectories start-
ing from decelerating expansion in Cþ and going
toward the de Sitter point Aþ. The left subregion
describes cosmologies which start from accelerated
anti–de Sitter A− and end their collapse decelerating
at C−. The upper subregion describes recollapsing
scenarios starting from expanding Cþ and ending at
the contracting C−. The lower subregion describes

2It is not necessary to analyze the roots of Γ with respect to the
combination ΩP=Ωϵ, because having a constant ratio ΩP=Ωϵ is
equivalent to having a constant Ω∂P and hence the critical
elements in the two cases can be related to each other.
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bouncing models starting from the anti–de Sitter A−
and ending at the expanding de Sitter Aþ.

(iii) The last region lying in ΩP ≤ −3 also describes
bouncing models starting from the anti–de Sitter
A− and going to the expanding de Sitter Aþ.

b. Invariant subsets for −1 < Ω̃∂P < − 1
3
. In this range,

points A− and Aþ still behave as source and sink respec-
tively. Points C� become saddle points, while point B
becomes a center. The variable space portrait is illustrated
in Fig. 1(b) for Ω̃∂P ¼ − 1

2
. In this range the full invariant

subset is divided into the three regions same as in the
previous case.

(i) The region in the range 3Ω̃∂P ≤ ΩP is dominated by
the presence of the center B. The trajectories in this
region describe cyclic models which go through
alternating accelerated and decelerated phases.

(ii) The bounded region −3 ≤ ΩP ≤ 3Ω̃∂P describes
bouncing universes starting from anti–de Sitter A−
and going to expanding de Sitter Aþ.

(iii) The region for the case ΩP ≤ −3 also represents
bouncing universes starting from anti–de Sitter A−
and going to the expanding de Sitter Aþ.

c. Invariant subsets for Ω̃∂P < −1. In this range,
points A� become saddle points. Point B still describes
center, while point C− is a source and Cþ is a sink. The
variable space dynamic for Ω̃∂P ¼ −2 is depicted in
Fig. 1(c). Similar to the previous cases the variable space
is divided into three independent regions.These three regions
are topologically the same as in the previous case. The only
differences are that A� and C� have swapped stability
properties andC� are located at lower values ofΩP than A�.

B. Nonpositive curvature

There are additional critical points for the nonpositive
curvature once we consider ΓðΩ̃∂PÞ ¼ 0. These critical
points are located at fΩH;ΩPg ¼ f� 1ffiffi

2
p ; 0g and describe

the Milne universe. At these points the deceleration
parameter is q ¼ 0 and the scale factor evolves as a ¼
�jkjðtþ c1Þ for ΩH ¼ � 1ffiffi

2
p respectively.

A critical point with ΩH ¼ 1ffiffi
2

p , which we denote as Dþ,
has the eigenvalues

fλDþ
i g ¼

	 ffiffiffi
2

p
;−

ffiffiffi
2

p

2
ð1þ 3Ω̃∂PÞ



; ð26Þ

in the invariant subset fΩH;ΩPg. When ΩH ¼ − 1ffiffi
2

p , the

critical point is denoted as D− and has the eigenvalues

fλD−
i g ¼

	
−

ffiffiffi
2

p
;

ffiffiffi
2

p

2
ð1þ 3Ω̃∂PÞ



: ð27Þ

Equations (26) and (27) imply that for − 1
3
< Ω̃∂P the

critical points D� are saddles, while for − 1
3
> Ω̃∂P,Dþ is a

source and D− is a sink.

(a)

(b)

(c)

FIG. 1. Invariant subsets for positive spatial curvature and ζ ¼
0.2 plotted for three representative values of Ω̃∂P in the ranges
given in Sec. IVA. The orange thick lines are the separatrices of
the system and the green shaded regions denote the part of the
variable space where the universe is accelerating.
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As in the positive curvature case, one can compactify the
variable space by applying the transformation (24) to obtain

X0
P ¼ ΩH

ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2

P

q
ð9ζ2Ω∂Pð1 − 2Ω2

HÞð1 − X2
PÞ

þ ζXP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2

P

q
ð1 − 3Ω∂P þ 2Ω2

HÞ þ X2
PÞÞ: ð28Þ

Our assumption of non-negative energy density causes
the Friedman constraint to limit the physically admissible
values of ΩH as discussed in Sec. II B. This assumption is
not imposed at the level of the evolution equations and
hence some trajectories might cross to the forbidden area.
The only trajectories lying entirely in the physical region
are confined between the separatrices connecting the points
fCþ; Dþ; Aþg for ΩH > 0 and fC−; D−; A−g for ΩH < 0,
as can be seen in Fig. 2. In the following we will focus our
discussion only in these physical regions.
a. Invariant subsets for − 1

3
< Ω̃∂P. The points Cþ and

A− are sources, D� are saddle points while the points C−
and Aþ are sinks. Figure 2(a) shows the variable space
dynamics for Ω̃∂P ¼ 1. For positive ΩH, the trajectories
start from Cþ and go toward the expanding de Sitter Aþ. On
the other hand, for negative ΩH, the trajectories begin from
the anti–de Sitter universe A− and go toward the contracting
C−. In both cases the trajectories can pass close to the
saddle points Dþ and D− respectively.
b. Invariant subsets for −1 < Ω̃∂P < − 1

3
. The variable

space is plotted in Fig. 2(b) for Ω̃∂P ¼ − 1
2
. In this case

points Dþ and A− represent sources, C� become saddle
points and the sinks are Aþ and D−. For ΩH > 0 the
trajectories start from expanding Milne universe Dþ and
going toward the expanding de Sitter Aþ. On the other
hand, for ΩH < 0, we see that the past attractor is now the
anti–de Sitter A− and the trajectories move toward the
collapsing Milne universe. In both cases some trajectories
may approach transiently Cþ and C− respectively.
c. Invariant subsets for Ω̃∂P < −1. The variable

space portrait for this case is illustrated in Fig. 2(c) where
Ω̃∂P ¼ −2 is chosen. In contrast to the other cases, here A�
become saddle points. Points Dþ and C− represent sources
and Cþ and D− are sinks. For ΩH > 0 the trajectories
start from expanding Milne universe and go toward the late
attractor Cþ. For ΩH < 0, the trajectories emerge from
the past attractor C− and end up at the contracting Milne
universe D−. In both cases, there are some trajectories
passing transiently trough Aþ and A− respectively.

V. EXAMPLES

In this section we close the system of equations follow-
ing two approaches: first by choosing a specific form of the
function Γ, and then by imposing instead a form of EoS
from which Γ can be derived. As we will see, both cases
will have the simplest functional form of Γ, that is linear in
Ω∂P, i.e.,

(c)

(b)

(a)

FIG. 2. Invariant subsets for negative spatial curvature and ζ ¼
0.2 plotted for three representative values of Ω̃∂P in the ranges
given in Sec. IV B. The orange thick lines are the separatrices.
The blue shaded areas are the regions excluded by our
assumption that Ωϵ > 0. The green shaded region are the part
of the variable space where we have accelerating universe.
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Γ ¼ αΩ∂P þ β; ð29Þ

where α and β are free parameters. One can find the
functional form of the EoS by integrating Eq. (7). Namely,
when 0 ≠ α ≠ −1

P ¼ αΩ∂P⋆ þ β

αð1þ αÞϵα⋆
ϵ1þα −

β

α
ϵþ P⋆; ð30Þ

and

Ω∂P ¼ ∂P
∂ϵ ¼ αΩ∂P⋆ þ β

αϵα⋆
ϵα −

β

α
; ð31Þ

where P⋆;Ω∂P⋆; ϵ⋆ are EoS integration constants.3

Depending on the free parameters, the first term in
Eq. (30) can represent a generalized Chaplygin gas [4],
while the second term includes a typical linear EoS;
however in general both terms can describe more exotic
fluids.
We can rewrite Eq. (30) as

ΩP ¼ 3

1þ α
ΩϵðΩ∂P − βÞ þ ΩP⋆ ; ð32Þ

where ΩP⋆ ¼ P⋆
D2. Equation (32) is a constraint between ΩP⋆

and the dynamical variables of our system and it implies
that, even though this quantity appears as a new variable,
we can retreat it during the evolution.

A. β= −α: causality condition

In light of the discussion of Sec. IV, we impose the
causality condition to this model by choosing β ¼ −α,
which implies Γ ¼ αðΩ∂P − 1). The EoS (30) in this case
reduces to

P ¼ Ω∂P⋆ − 1

ð1þ αÞϵα⋆
ϵ1þα þ ϵþ P⋆: ð33Þ

Note that this represents a combination of a stiff EoS and an
exotic fluid.
By demanding further that when the energy density

tends to zero, the pressure does not diverge, Eq. (33)
implies that α > −1.4

The EoS (33) has an extremum at

ϵe ¼
ϵ⋆

ð1 −Ω∂P⋆Þ1=α
; ð34Þ

which is maximum if α > 0 and minimum if α < 0. If one
ignores an early inflationary epoch, then the pressure of the

fluid should be positive for large energy densities. For low
energy densities, to reproduce the effect of dark energy, one
would expect negative pressure. Thus, the EoS we want has
a minimum, i.e., −1 < α < 0.
For P ¼ P⋆ Eq. (33) implies that either

Ω∂P⋆ ¼ −α

or ϵ⋆ ¼ 0. The latter leads to the trivial EoS of the stiff fluid,
since −1 < α < 0. Thus, we choose the former. If further
we make the reasonable demand that the pressure tends to
zero along with the energy density, then

P⋆ ¼ 0;

which brings the constraint (32) to

ΩP ¼ 3

1þ α
ΩϵðΩ∂P þ αÞ: ð35Þ

This, combined with the Friedmann constraint, reduces the
system to two dimensions. Namely, due to the Friedmann
constraints (13) or (15) one can disregard the Ωϵ evolution
Eq. (9), and due to the constraint (35) we can ignore the
ΩP evolution equation (11). Thus, the remaining dynamical
variables are Ω∂P and ΩH. Note that constraint (35)
introduces an invariant subset at Ω∂P ¼ −ð1þ 2αÞ. As we
want to preserve causality and also allow for positive Ω∂P,
we will focus our analysis in the compact region
Ω∂P ∈ ½−ð1þ 2αÞ; 1�.
The critical lines A� intersect the new invariant subset at

fΩH;Ω∂Pg ¼ f�1;−ð1þ 2αÞg; ð36Þ

while the critical line B intersects it at

fΩH;Ω∂Pg ¼
	
0;−

1þ 4α

3



: ð37Þ

The critical points D� lie at

fΩH;Ω∂Pg ¼
	
� 1ffiffiffi

2
p ; 1



: ð38Þ

Given the chosen form of Γ and the assumptions on the
parameters made above, for the negative curvature we get a
new pair of Milne-like critical points E� at

fΩH;Ω∂Pg ¼
	
� 1ffiffiffi

2
p ;−ð1þ 2αÞ



: ð39Þ

In the invariant subset fΩH;Ω∂Pg critical point Eþ has
eigenvalues

fλEþ
i g ¼ f

ffiffiffi
2

p
; 3

ffiffiffi
2

p
αg; ð40Þ

3The two special cases α ¼ 0 and α ¼ −1 will not be
discussed, since in the former case the EoS can violate causality,
while in the latter case the pressure diverges as ϵ → 0.

4Note that, since we have assumed causality, it holds that
1 − Ω∂P⋆ ≥ 0. Thus, Ω∂P⋆−1

ð1þαÞϵα⋆ ≤ 0.
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while critical point E− has eigenvalues

fλEþ
i g ¼ f

ffiffiffi
2

p
; 3

ffiffiffi
2

p
αg; ð41Þ

which shows that points E� represent saddle points in the
range −1 < α < 0. The critical points C� lie at

fΩH;Ω∂Pg ¼ f�1; 1g: ð42Þ

Points C� describe cases of stiff matter dominated
universe, in which the scale factor evolves as a ∼ t

1
3 and

the cosmological parameter q ¼ 2. Point Cþ (ΩH ¼ 1) has
eigenvalues

fλCþ
i g ¼ f4;−6αg; ð43Þ

while C− (ΩH ¼ −1) has eigenvalues

fλC−
i g ¼ f−4; 6αg: ð44Þ

Note that points C� lie on the invariant subsetΩ∂P ¼ 1. All
the aforementioned critical points along with their stability
are summarized in Table I.
In Figs. 3 and 4 we show these critical points for the

cases k ≥ 0 and k ≤ 0 respectively where the free param-
eter α ¼ −0.1. The variable space for k ≥ 0, i.e., Fig. 3, is
divided into four subregions from the respective separa-
trices. All four can transiently pass through a static phase in
case they approach point B. The right subregion starts from
the stiff matter era Cþ expanding exponentially toward the
de Sitter point Aþ. The left subregion describes cosmol-
ogies starting from the contracting Anti-de Sitter point A−
and collapsing to the future stiff matter attractor C−. The
upper subregion describes recollapsing scenarios starting
from the expanding stiff point Cþ and ending at the stiff
point C−. The lower subregion is describing bouncing
models from the contracting de sitter A−, to the expanding

de Sitter Aþ. On the other hand, the variable space for k ≤ 0

is divided into two subregions since 1
2
≤ Ω2

H ≤ 1. The right
subregion describes models starting from the stiff matter
sourceCþ, which expand toward the de Sitter point attractor
Aþ. Whereas, the left subregion describes scenarios starting

TABLE I. The critical points of the system described in
Sec. VA on the fΩH;Ω∂Pg plane and their stability for −1 <
α < 0 and non-negative curvature.

Point ΩH Ω∂P Stability Curvature

Aþ 1 −ð1þ 2αÞ sink flat
A− −1 −ð1þ 2αÞ source flat
B 0 − 1þ4α

3
saddle positive

Cþ 1 1 source flat
C− −1 1 sink flat
Dþ 1ffiffi

2
p 1 saddle negative

D− − 1ffiffi
2

p 1 saddle negative

Eþ 1ffiffi
2

p −ð1þ 2αÞ saddle negative

E− − 1ffiffi
2

p −ð1þ 2αÞ saddle negative

FIG. 3. Invariant subset of the system studied in Sec. VA for
non-negative curvature with α ¼ −0.1. The green shaded area
denotes the phase of accelerated expansion q < 0 and the orange
thick lines indicate the separatrices.

FIG. 4. Invariant subset of the system studied in Sec. VA with
α ¼ −0.1 for nonpositive curvature. The blue shaded area is the
region excluded by our assumption that Ωϵ > 0. The green
shaded region is the part of the variable space where we have
accelerating universe.
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from contracting de Sitter, point A−, and eventually col-
lapsing to the stiff mater point attractor C−. Note that the
variable spaces depicted in Figs. 3 and 4 depend only on the
free parameter α and they just rescale accordingly. Namely,
changing the value of α in the interval −1 < α < 0, changes
the coordinate Ω∂P of points A� in the interval ½−1; 1�
(alongside with the invariant subset Ω∂P ¼ −ð1þ 2αÞ) and
B in the interval ½−1=3; 1�.
The setup−1<α<0 has also the following consequences:
(i) For the positive curvature, by combining the limits

imposed on Ω∂P by the invariant subsets, the
Friedmann constraint (13) and the constraint (35),
we have

−3 ≤ ΩP ≤ 3: ð45Þ
(ii) For the negative curvature, Friedmann constraint

together with constraint (35) and the limits imposed
on Ω∂P by the invariant subsets, lead to

	−3Ωϵ ≤ ΩP ≤ 3Ωϵ

0 ≤ Ωϵ ≤ 1
ð46Þ

By substituting Eq. (33) with P⋆ ¼ 0 into the continuity
equation (3) we can calculate the scale factor in terms of ϵ
as follows (taking into account that −1 < α < 0)

a ¼ a0

�
2 − ðϵ⋆ϵ0Þjαj
2 − ðϵ⋆ϵ Þjαj

� 1
6jαj�ϵ0

ϵ

�
1=6

: ð47Þ

From Eq. (47) and Eq. (31) we can explain the behavior
of the scale factor in the different subregions of Fig. 3
and Fig. 4, with the aid of Fig. 5. Points C� correspond
to ϵ → ∞ where the scale factor a → 0. On the other

hand, A� are points in which ϵ → 2
− 1
jαjϵ⋆ ≡ ϵd and the scale

factor diverges. The latter actually happens when the EoS

intersects P ¼ −ϵ. Point B corresponds to ϵB ¼ ð3=4Þ 1
jαjϵ⋆

which has a finite scale factor value. In the right subregion
of Fig. 3 the scale factor evolves from a ¼ 0 at ϵ ¼ ∞ to

the point ϵ ¼ 2
− 1
jαjϵ⋆ where the scale factor diverges. The

left subregion has the opposite behavior, namely the scale
factor starts from infinite value and decreases to zero. In the
upper subregion the scale factor starts from zero, increases
and then decreases to zero again. The maximum value it
can attain is ϵmax > ϵB. In the lower subregion, the scale
factor starts from infinity, decreases and then increases
again to infinity. The minimum value it can attain is
ϵmin < ϵB. The behavior of the scale factor in the left
and right subregions of Fig. 4 are analogous to the behavior
in the left and right subregions of Fig. 3 respectively.
When α > − 1

2
, then ϵd < ϵe and Ω∂P can attain negative

values. For α ¼ −1=2 the energy density of the scale factor
divergence coincides with the EoS’s minimum, i.e., ϵd ¼ ϵe
and this happens when Ω∂P ¼ 0. For α < − 1

2
, Ω∂P > 0.

B. The quadratic EoS

In [18–22] the quadratic EoS

P ¼ δ

ϵc
ϵ2 þ σϵþ P⋆; ð48Þ

was studied thoroughly. Here we compare the results of
[21] with our formalism, by adopting their reasoning by
viewing the EoS (48) as a Taylor expansion of an unknown
barotropic EoS around ϵ ¼ 0 without necessarily demand-
ing that P⋆ ¼ 0. From Eq. (48) we can write

Ω∂P ¼ 2
δ

ϵc
ϵþ σ; ð49Þ

ΩP ¼ 3

2
ΩϵðΩ∂P þ σÞ þ ΩP⋆ ð50Þ

and derive the Γ function in our variables as follows

Γ ¼ Ω∂P − σ; ð51Þ

which shows that the quadratic EoS brings a Γ which is
linear in Ω∂P. In order to analyze the behavior of the
quadratic EoS we split it into the three cases as done in [21].
a. δ ¼ 0 the linear EoS. In this case, since Ω∂P ¼ σ is a

constant, the system is similar to the cases analyzed
in Sec. IV.
b. P⋆ ¼ 0. This amounts to assuming that the pressure

tends to zero along with the energy density. Thus, Eq. (50)
provides the constraint

ΩP ¼ 3

2
ΩϵðΩ∂P þ σÞ: ð52Þ

Similarly to the example given in Sec. VA this constraint
reduces the system to two dimensions. Therefore, the
critical points A� lie at

FIG. 5. Behavior of the scale factor as a function of energy
density as given by Eq. (47). The orange line is the value ϵ ¼
2
− 1
jαjϵ⋆ where the scale factor diverges.
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fΩH;Ω∂Pg ¼ f�1;−ð2þ σÞg: ð53Þ

The critical point B is located at

fΩH;Ω∂Pg ¼
	
0;−

�
2

3
þ σ

�

: ð54Þ

Critical points C� are located at

fΩH;Ω∂Pg ¼ f�1; σg: ð55Þ

Critical lines D� are located at

fΩH;Ω∂Pg ¼
	
� 1ffiffiffi

2
p ; σ



: ð56Þ

There is also a pair of Milne-like critical points E� for
negative curvature at

fΩH;Ω∂Pg ¼
	
� 1ffiffiffi

2
p ;−ð2þ σÞ



: ð57Þ

As in Sec. IV in order to compactify the variable space we
use the transformation

X∂P ¼ ζΩ∂Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ2Ω2∂P

q ∈ ½−1; 1�: ð58Þ

The evolution equation for X∂P becomes

X0∂P¼
3ΩH

2ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−X2∂P

q

×
�
σξ2ðσþ2Þð1−X2∂PÞþX∂P

�
1þ2ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−X2∂P

q ��

ð59Þ

and it holds for both curvatures.
Once we have compactified the variable space two more

pairs of critical points appear for the flat case, while two
Milne-like pairs of critical points appear for the negative
curvature. In particular, I� appear at fΩH;Ω∂Pg¼
f�1;þ∞g, F� appear at fΩH;Ω∂Pg ¼ f�1;−∞g, G�
appear at fΩH;Ω∂Pg ¼ f� 1ffiffi

2
p ;þ∞g, while H� appear

at fΩH;Ω∂Pg ¼ f� 1ffiffi
2

p ;−∞g.
In Figs. 6–8 the variable spaces fΩH; X∂Pg for different

ranges of σ are plotted. These variable spaces are divided
into two main subregions depending on the sign of δ: the
subregions above the separatrices connecting points C�
correspond to an EoS with δ ¼ þ1 and the rest of variable
space describes the case δ ¼ −1.
For comparing our analysis to the one in [21] let us

denote X̃∂P ¼ X∂PðΩ∂P ¼ σÞ by using Eq. (58). Figures 4
and 7 of [21] correspond to X∂P > X̃∂P and X∂P < X̃∂P in
our Fig. 6 respectively. Figures 3 and 6 of [21] correspond
to X∂P > X̃∂P and X∂P < X̃∂P in our Fig. 7 respectively.
Figures 1 and 5 of [21] correspond to X∂P > X̃∂P and
X∂P < X̃∂P in our Fig. 8 respectively. When X∂P ¼ X̃∂P,
Eq. (49) implies either ϵ ¼ 0 or δ ¼ 0. However, due to the
Friedmann constraint ϵ is in general different from zero;
hence we have δ ¼ 0, which is case a. above.

FIG. 6. Invariant subsets fΩH; X∂Pg for the quadratic EoS with P⋆ ¼ 0 in the case of positive spatial curvature (left panel) and
negative spatial curvature (right panel) when ζ ¼ 0.2 and σ ¼ 1. The orange thick lines are the separatrices of the system and the green
shaded regions denote the part of the variable space where the universe is accelerating.
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The points A�, B, I� and F� were identified also in [21].
Additionally, we find a pair of fluid-dominated models (C�)
and two pairs of Milne-like solutions for negative curvature
(D� andE�).Moreover, through compactificationwe are able
to identify the critical points G� and H� at infinity. On the
other hand, contrary to [21], in our settingwe cannot identify a
critical element corresponding to Minkowski spactime.
Table II sums up the appearing critical points.
c. Generic quadratic EoS. We can write P⋆ as

P⋆ ¼ Δ
ϵc
4δ

ðσ − ξÞ2; ð60Þ

where ξ∈f−∞;þ∞g and Δ¼−δsgnðσ−ξÞ. Writing it
in terms of our dimensionless variables by using Eq. (49)
we get

ΩP⋆ ¼
3

2
ΔΩϵ

ðσ − ξÞ2
Ω∂P − σ

: ð61Þ

By combining Eqs. (60) and (61) along with our assumption
Ωϵ > 0, we get the following constraints on the allowed
values of Ω∂P for σ ≠ ξ:

FIG. 8. Invariant subsets fΩH; X∂Pg for the quadratic EoS with P⋆ ¼ 0 in the case of positive spatial curvature (left panel) and
negative spatial curvature (right panel) when ζ ¼ 0.2 and σ ¼ −2. The orange thick lines are the separatrices of the system and the green
shaded regions denote the part of the variable space where the universe is accelerating.

FIG. 7. Invariant subsets fΩH; X∂Pg for the quadratic EoS with P⋆ ¼ 0 in the case of positive spatial curvature (left panel) and
negative spatial curvature (right panel) when ζ ¼ 0.2 and σ ¼ −0.5. The orange thick lines are the separatrices of the system and the
green shaded regions denote the part of the variable space where the universe is accelerating.
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if δ > 0 ⇒ Ω∂P > σ ð62Þ

if δ < 0 ⇒ Ω∂P < σ ð63Þ

In the case σ ¼ ξ, then P� ¼ 0 and we reduce to the
previous case.
By combining Eqs. (61) and (50) we get the constraint

ΩP ¼ 3

2

Ωϵ

Ω∂P − σ
ðΩ2∂P − σ2 þ Δðσ − ξÞ2Þ; ð64Þ

which together with Friedmann constraints (13) or (15)
reduce the system to two dimensions, namely the remaining
dynamical variables are Ω∂P and ΩH.
Note that for Ω∂P ¼ σ, Eq. (61) becomes singular:

however, this singularity does not affect the evolution
equation (12), since the denominator is cancelled by the
Γ given by Eq. (51). Actually, Ω∂P ¼ σ is the intersection
line between the plane fΩ∂P;ΩHg and the case a. above.
The critical points discussed in Secs. III and IV are now

the following:

TABLE II. Quadratic EoS: number of critical points appearing
on the invariant subsets for different ranges of the parameters with
P⋆ ¼ 0. C� exist for any parameter ranges and curvature, while
points D� exist for any parameter ranges for negative curvature.
The points at infinity are not included.

δ σ Aþ A− B Eþ E− Figure

þ1 − 1
3
< σ 0 0 0 0 0 Fig. 6

−1 < σ < − 1
3

0 0 1 0 0 Fig. 7
σ < −1 1 1 1 1 1 Fig. 8

−1 − 1
3
< σ 1 1 1 1 1 Fig. 6

−1 < σ < − 1
3

1 1 0 1 1 Fig. 7
σ < −1 0 0 0 0 0 Fig. 8

TABLE III. Quadratic EoS: number of critical points appearing on the invariant subsets for different ranges of the parameters with
P⋆ ≠ 0. C� exist for any parameter ranges and curvature, while points D� exist for any parameter ranges for negative curvature. The
points at infinity are not included.

δ σ P⋆ ξ ΩP⋆ Aþ A− B Eþ E− Figure

þ1 σ < −1 ϵcð1þ3σÞ2
36δ < P⋆ − 1

3
< ξ 1

6
Ωϵ

ð1þ3σÞ2
Ω∂P−σ < ΩP⋆

0 0 0 0 0 Fig. 9

P⋆ ¼ ϵcð1þ3σÞ2
36δ

ξ ¼ − 1
3 ΩP⋆ ¼ 1

6
Ωϵ

ð1þ3σÞ2
Ω∂P−σ

0 0 1 0 0 Fig. 10

ϵcð1þσÞ2
4δ <P⋆ < ϵcð1þ3σÞ2

36δ
−1 < ξ < − 1

3
3
2
Ωϵ

ð1þσÞ2
Ω∂P−σ<ΩP⋆<

1
6
Ωϵ

ð1þ3σÞ2
Ω∂P−σ

0 0 2 0 0 Fig. 11

P⋆ ¼ ϵcð1þσÞ2
4δ

ξ ¼ −1 ΩP⋆ ¼ 3
2
Ωϵ

ð1þσÞ2
Ω∂P−σ

1 1 2 1 1 Fig. 12

0 < P⋆ < ϵcð1þσÞ2
4δ

σ < ξ < −1 0 < ΩP⋆ <
3
2
Ωϵ

ð1þσÞ2
Ω∂P−σ

2 2 2 2 2 Fig. 13

P⋆ < 0 ξ < σ ΩP⋆ < 0 1 1 1 1 1 Fig. 14
−1< σ<−1

3
ϵcð1þ3σÞ2

36δ < P⋆ − 1
3
< ξ 1

6
Ωϵ

ð1þ3σÞ2
Ω∂P−σ < ΩP⋆

0 0 0 0 0 Fig. 9

P⋆ ¼ ϵcð1þ3σÞ2
36δ

ξ ¼ − 1
3 ΩP⋆ ¼ 1

6
Ωϵ

ð1þ3σÞ2
Ω∂P−σ

0 0 1 0 0 Fig. 10

0 < P⋆ < ϵcð1þ3σÞ2
36δ

σ < ξ < − 1
3 0 < ΩP⋆ <

1
6
Ωϵ

ð1þ3σÞ2
Ω∂P−σ

0 0 2 0 0 Fig. 11

P⋆ < 0 ξ < σ ΩP⋆ < 0 1 1 1 1 1 Fig. 14
− 1

3
< σ 0 < P⋆ σ < ξ 0 < ΩP⋆ 0 0 0 0 0 Fig. 9

P⋆ < 0 ξ < σ ΩP⋆ < 0 1 1 1 1 1 Fig. 14

−1 σ < −1 0 < P⋆ σ < ξ 0 < ΩP⋆ 1 1 1 1 1 Fig. 15
P⋆ < 0 ξ < σ ΩP⋆ < 0 0 0 0 0 0 Fig. 20

−1< σ<−1
3

0 < P⋆ σ < ξ 0 < ΩP⋆ 1 1 1 1 1 Fig. 15
ϵcð1þσÞ2

4δ < P⋆ < 0 −1 < ξ < σ 3
2
Ωϵ

ð1þσÞ2
Ω∂P−σ < ΩP⋆ < 0 2 2 0 2 2 Fig. 18

P⋆ ¼ ϵcð1þσÞ2
4δ

ξ ¼ −1 ΩP⋆ ¼ 3
2
Ωϵ

ð1þσÞ2
Ω∂P−σ

1 1 0 1 1 Fig. 19

P⋆ < ϵcð1þσÞ2
4δ

ξ < −1 ΩP⋆ <
3
2
Ωϵ

ð1þσÞ2
Ω∂P−σ

0 0 0 0 0 Fig. 20

− 1
3
< σ 0 < P⋆ σ < ξ 0 < ΩP⋆ 1 1 1 1 1 Fig. 15

ϵcð1þ3σÞ2
36δ < P⋆ < 0 − 1

3
< ξ < σ 1

6
Ωϵ

ð1þ3σÞ2
Ω∂P−σ < ΩP⋆ < 0 2 2 2 2 2 Fig. 16

P⋆ ¼ ϵcð1þ3σÞ2
36δ

ξ ¼ − 1
3 ΩP⋆ ¼ 1

6
Ωϵ

ð1þ3σÞ2
Ω∂P−σ

2 2 1 2 2 Fig. 17

ϵcð1þσÞ2
4δ <P⋆<ϵcð1þ3σÞ2

36δ
−1 < ξ < − 1

3
3
2
Ωϵ

ð1þσÞ2
Ω∂P−σ<ΩP⋆<

1
6
Ωϵ

ð1þ3σÞ2
Ω∂P−σ

2 2 0 2 2 Fig. 18

P⋆ ¼ ϵcð1þσÞ2
4δ

ξ ¼ −1 ΩP⋆ ¼ 3
2
Ωϵ

ð1þσÞ2
Ω∂P−σ

1 1 0 1 1 Fig. 19

P⋆ < ϵcð1þσÞ2
4δ

ξ < −1 ΩP⋆ <
3
2
Ωϵ

ð1þσÞ2
Ω∂P−σ

0 0 0 0 0 Fig. 20
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(i) the critical points A� are located at

fΩH;Ω∂Pg¼
	
�1;−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−σð2−σÞ−Δðσ−ξÞ2

q 

;

ð65Þ
(ii) the critical point B is located at

fΩH;Ω∂Pg¼
	
0;−

1

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9
þσ

�2
3
þσ

�
−Δðσ−ξÞ2

r 

;

ð66Þ
(iii) the critical points C� are located at

fΩH;Ω∂Pg ¼ f�1; σg; ð67Þ
(iv) the critical points D� are located at

fΩH;Ω∂Pg ¼
	
� 1ffiffiffi

2
p ; σ



; ð68Þ

The additional Milne-like critical points E� are located at

fΩH;Ω∂Pg¼
	
� 1ffiffiffi

2
p ;−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−σð2−σÞ−Δðσ−ξÞ2

q 

:

ð69Þ
In Appendix B we show representative cases which

are summarized in Table III. The comparison of the number
of critical points between our study and the analysis of [21]
for this generic case follows the same lines as in paragraph b.

VI. CONCLUSIONS

This work introduces a framework to analyze dynami-
cally systems of barotropic fluids with non-negative energy
density in spatially curved FRW spacetimes in absence of
the cosmological constant. First we have introduced the
new variables and the new evolution parametrization of this
framework along with the function Γ, which includes all the
information about the EoS. In this general setup we have
identified three critical lines:

(i) two de Sitter for spatially flat FRW,
(ii) one static universe for non-negative curvatures,

that are independent of the EoS. The stability of these lines
depends on the value of the variable Ω∂P along the lines
themselves. Then we have discussed general features of the
function Γ:
(1) we have shown that Γ ¼ ΓðΩ∂P; ΩP

Ωϵ
Þ;

(2) we have shown that the roots of Γ are stationary
points in time and in the case Γ ¼ ΓðΩ∂PÞ they
define invariant subsets;

(3) we have studied these invariant subsets in the case
that there is a single root Ω̃∂P and have found that:
(a) there is a pair of new critical points corresponding

to one-fluid flat universe,whose stability depends
on Ω̃∂P,

(b) there is a pair of Milne critical points for non-
positive curvature, whose stability depends
on Ω̃∂P.

In the second part of the work we have provided two
examples of how the framework we have introduced can
be used.
(1) In the first example we have taken a function of Γ

linear in Ω∂P with two free parameters and through
physically motivated arguments, like causality, we
have trimmed the Γ model to a one parameter model
with specific value interval. The resulting EoS rep-
resents a linear superposition of an exotic fluid with
stiff matter. The stiff matter part of EoS dominates for
large energy densities, while for low energy densities
the exotic fluid part takes over. In this example apart
from the dynamical elements identified in the general
setup, a new invariant subset and a new pair of critical
points exist. The new pair corresponds to Milne-like
models. Regarding the invariant subsets, the one
coming from the general analysis confines our model
to obey causality,while the newone does not allow the
EoS to cross the P ¼ −ϵ line.

(2) In the second example we have applied our frame-
work to the quadratic EoS studied in [21] and made
the comparison with that study. We have identified
all the critical points found in [21], except from a
critical point describing the Minkowski spactime,
and additionally we have found
(a) a pair of fluid-dominated models for the flat case,
(b) two pairs of Milne-like solutions for negative

curvature,
(c) two pairs of critical points with Milne-like

behavior at Ω∂P → �∞.
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APPENDIX A: FUNCTION Γ LINEAR IN ΩP
Ωϵ

The linear Γ function Eq. (29) can be written also in
terms of the dimensionless combination ΩP

Ωϵ
. By solving

Eq. (32) in term of Ω∂P

Ω∂P ¼ 1þ α

3

ΩP −ΩP⋆
Ωϵ

þ β; ðA1Þ

and then substituting it into the Eq. (29) we get

Γ ¼ α̂
Ω̂P

Ωϵ
þ β̂; ðA2Þ

where α̂ ¼ αðαþ1Þ
3

, β̂ ¼ βðαþ 1Þ and

Ω̂P ¼ ΩP −ΩP⋆ ¼
P − P⋆
D2

:

In the case that P⋆ ¼ 0, Γ is just a linear function of ΩP
Ωϵ
.
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APPENDIX B: INVARIANT SUBSETS FOR QUADRATIC EoS

In Figs. 9–20 we compare the results of our analysis in different parameter cases with respect to the ones obtained in [21].
Parameter cases that are topologically analogous are represented by a single figure for each case—see Table III and the
captions of the respective figures for details.

FIG. 10. Invariant subsets fΩH; X∂Pg for the quadratic EoS with P⋆ ≠ 0. The right panel corresponds to the positive spatial curvature
and the left panel corresponds to the negative spatial curvature case. The invariant subsets are plotted for the parameters δ ¼ 1, σ ¼ −4,
ξ ¼ − 1

3
and ζ ¼ 0.1 (these figures are topologically similar to the case with parameters δ ¼ 1, −1 < σ < − 1

3
and ξ ¼ − 1

3
). The orange

thick lines are the separatrices of the system, the blue region corresponds to Ωϵ < 0. This figure corresponds to Fig. 14 in [21].

FIG. 9. Invariant subsets fΩH; X∂Pg for the quadratic EoS with P⋆ ≠ 0. The right panel corresponds to the positive spatial curvature
and the left panel corresponds to the negative spatial curvature case. Invariant subsets are plotted for the parameters δ ¼ 1, σ ¼ −4,
ξ ¼ 1 and ζ ¼ 0.1 (these figures are topologically similar to the cases with parameters δ ¼ 1, −1 < σ < − 1

3
, − 1

3
< ξ and also δ ¼ 1,

− 1
3
< σ, σ < ξ). The orange thick lines are the separatrices of the system, the blue region corresponds toΩϵ < 0. This figure corresponds

to Fig. 10 in [21].
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FIG. 11. Invariant subsets fΩH; X∂Pg for the quadratic EoS with P⋆ ≠ 0. The right panel corresponds to the positive spatial curvature
and the left panel corresponds to the negative spatial curvature case. The invariant subsets are plotted for the parameters δ ¼ 1, σ ¼ −4,
ξ ¼ −0.5 and ζ ¼ 0.1 (these figures are topologically similar to the case with parameters δ ¼ 1, −1 < σ < − 1

3
, σ < ξ < − 1

3
). The

orange thick lines are the separatrices of the system, the blue region corresponds to Ωϵ < 0 and the green shaded region corresponds to
accelerated dynamics. This figure corresponds to Fig. 15 in [21].

FIG. 12. Invariant subsets fΩH; X∂Pg for the quadratic EoS with P⋆ ≠ 0. The right panel corresponds to the positive spatial curvature
and the left panel corresponds to the negative spatial curvature case. The invariant subsets are plotted for the parameters δ ¼ 1, σ ¼ −4,
ξ ¼ −1 and ζ ¼ 0.1. The orange thick lines are the separatrices of the system, the blue region corresponds to Ωϵ < 0 and the green
shaded region corresponds to accelerated dynamics. This figure corresponds to Fig. 16 in [21].
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FIG. 13. Invariant subsets fΩH; X∂Pg for the quadratic EoS with P⋆ ≠ 0. The right panel corresponds to the positive spatial curvature
and the left panel corresponds to the negative spatial curvature case. The invariant subsets are plotted for the parameters δ ¼ 1, σ ¼ −4,
ξ ¼ −1.5 and ζ ¼ 0.1. The orange thick lines are the separatrices of the system, the blue region corresponds to Ωϵ < 0 and the green
shaded region corresponds to accelerated dynamics. This figure corresponds to Fig. 17 in [21].

FIG. 14. Invariant subsets fΩH; X∂Pg for the quadratic EoS with P⋆ ≠ 0. The right panel corresponds to the positive spatial curvature
and the left panel corresponds to the negative spatial curvature case. The invariant subsets are plotted for the parameters δ ¼ 1, σ ¼ −4,
ξ ¼ −8 and ζ ¼ 0.1 (these figures are topologically similar to the cases with parameters δ ¼ 1, −1 < σ < − 1

3
, ξ < σ and also δ ¼ 1,

− 1
3
< σ, ξ < σ). The orange thick lines are the separatrices of the system, the blue region corresponds to Ωϵ < 0 and the green shaded

region corresponds to accelerated dynamics. This figure corresponds to Fig. 13 in [21].
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FIG. 15. Invariant subsets fΩH; X∂Pg for the quadratic EoS with P⋆ ≠ 0. The right panel corresponds to the positive spatial curvature
and the left panel corresponds to the negative spatial curvature case. The invariant subsets are plotted for the parameters δ ¼ −1, σ ¼ 1,
ξ ¼ 3 and ζ ¼ 0.2 (these figures are topologically similar to the cases with parameters δ ¼ −1, σ < −1, σ < ξ and also δ ¼ −1,
−1 < σ < − 1

3
, σ < ξ). The orange thick lines are the separatrices of the system, the blue region corresponds to Ωϵ < 0 and the green

shaded region corresponds to accelerated dynamics. This figure corresponds to Fig. 8 in [21].

FIG. 16. Invariant subsets fΩH; X∂Pg for quadratic EoS with P⋆ ≠ 0. The right panel corresponds to the positive spatial curvature and
the left panel corresponds to the negative spatial curvature case. The invariant subsets are plotted for the parameters δ ¼ −1, σ ¼ 1,
ξ ¼ −0.3 and ζ ¼ 0.2. The orange thick lines are the separatrices of the system, the blue region corresponds to Ωϵ < 0 and the green
shaded region corresponds to accelerated dynamics the blue regions are not covered by the analysis. This figure corresponds to
Fig. 18 in [21].
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FIG. 18. Invariant subsets fΩH; X∂Pg for the quadratic EoS with P⋆ ≠ 0. The right panel corresponds to the positive spatial curvature
and the left panel corresponds to the negative spatial curvature case. Invariant subsets are plotted for the parameters δ ¼ −1, σ ¼ 1,
ξ ¼ −0.5 and ζ ¼ 0.2 (these figures are topologically similar to the case with parameters δ ¼ −1, −1 < σ < − 1

3
, −1 < ξ < σ). The

orange thick lines are the separatrices of the system, the blue region corresponds to Ωϵ < 0 and the green shaded region corresponds to
accelerated dynamics. This figure corresponds to Fig. 20 in [21].

FIG. 17. Invariant subsets fΩH; X∂Pg for quadratic EoS with P⋆ ≠ 0. The right panel corresponds to the positive spatial curvature and
the left panel corresponds to the negative spatial curvature case. Invariant subsets are plotted for the parameters δ ¼ −1, σ ¼ 1, ξ ¼ − 1

3

and ζ ¼ 0.2. The orange thick lines are the separatrices of the system, the blue region corresponds toΩϵ < 0 and the green shaded region
corresponds to accelerated dynamics. This figure corresponds to Fig. 19 in [21].
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FIG. 20. Invariant subsets fΩH; X∂Pg for the quadratic EoS with P⋆ ≠ 0. The right panel corresponds to the positive spatial curvature
and the left panel corresponds to the negative spatial curvature case. The invariant subsets are plotted for the parameters δ ¼ −1, σ ¼ 1,
ξ ¼ −2 and ζ ¼ 0.2 (these figures are topologically similar to the cases with the parameters δ ¼ −1, σ < −1, ξ < σ and also δ ¼ −1,
−1 < σ < − 1

3
, ξ < −1). The orange thick lines are the separatrices of the system, the blue region corresponds to Ωϵ < 0 and the green

shaded region corresponds to accelerated dynamics. This figure corresponds to Fig. 11 in [21].

FIG. 19. Invariant subsets fΩH; X∂Pg for the quadratic EoS with P⋆ ≠ 0. The right panel corresponds to the positive spatial curvature
and the left panel corresponds to the negative spatial curvature case. The invariant subsets are plotted for the parameters δ ¼ −1, σ ¼ 1,
ξ ¼ −1 and ζ ¼ 0.2 (these figures are topologically similar to the case with parameters δ ¼ −1, −1 < σ < − 1

3
, ξ ¼ −1). The orange

thick lines are the separatrices of the system, the blue region corresponds to Ωϵ < 0 and the green shaded region corresponds to
accelerated dynamics. This figure corresponds to Fig. 21 in [21].
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